AFRL-RI-RS-TR-2009-278

Final Technical Report
December 2009

THE USE OF EMPIRICAL STUDIES IN THE
DEVELOPMENT OF HIGH END COMPUTING
APPLICATIONS

University of Maryland

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. AO/T810

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE
ROME RESEARCH SITE
ROME, NEW YORK

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or
corporation; or convey any rights or permission to manufacture, use, or sell any patented
invention that may relate to them.

This report was cleared for public release by the 88" ABW, Wright-Patterson AFB
Public Affairs Office and is available to the general public, including foreign nationals.
Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2009-278 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION
STATEMENT.

FOR THE DIRECTOR:

Is/ Is/
CHRISTOPHER FLYNN EDWARD J. JONES, Deputy Chief
Work Unit Manager Advanced Computing Division

Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

http://www.dtic.mil

REPORT DOCUMENTATION PAGE T 10188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,

gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,

1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,

Paperwork Reduction Project (0704-0188) Washington, DC 20503.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE
DECEMBER 2009

3. DATES COVERED (From - To)

Final March 2005 — May 2009

5a. CONTRACT NUMBER
FA8750-05-1-0100

4. TITLE AND SUBTITLE

THE USE OF EMPIRICAL STUDIES IN THE DEVELOPMENT OF HIGH

END COMPUTING APPLICATIONS 5b. GRANT NUMBER N/A

5c. PROGRAM ELEMENT NUMBER

62303E
6. AUTHOR(S) 5d. PROJECT NUMBER
T810

Victor R. Basili and Marvin V. Zelowitz

5e. TASK NUMBER

HE

5f. WORK UNIT NUMBER
CA

PERFORMING ORGANIZATION
REPORT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8.
University of Maryland
3112 Lee Building

College Park, MD 20742-5100 N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)

N/A

AFRL/RITB Defense Advanced Research Projects Agency (DARPA)

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER

AFRL-RI-RS-TR-2009-278

3701 North Fairfax Drive
Arlington, VA 22203-1714

525 Brooks Road
Rome NY 13441-4505

12. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA# 88ABW-2009-5051 Date Cleared: 4-December-2009

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This report provides a description of the research and development activities towards learning much about the development and
measurement of productivity in high performance computing environments. Many objectives were accomplished including the
development of a methodology for measuring productivity in the parallel programming domain. This methodology was tested over
25 times at 8 universities across the United States and can be used to aid other researchers studying similar environments. The
productivity measurement methodology incorporates both development time and performance into a single productivity number. An
Experiment Manager tool for collecting data on the development of parallel programs, as well as a suite of tools to aid in the capture
and analysis of such data was also developed. Lastly, several large scale development environments were studied in order to better
understand the environment used to build large parallel programming applications. That work also included several surveys and
interviews with many professional programmers in these environments.

15. SUBJECT TERMS
Productivity, high performance computing (HPC) , parallel programming

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF j18. NUMBER 19a. NAME OF RESPONSIBLE PERSON
ABSTRACT OF PAGES Christopher J. Flynn
a. REPORT b. ABSTRACT c. THIS PAGE uu 92 19b. TELEPHONE NUMBER (Include area code)
U U U N/A

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 239.18

TABLE OF CONTENTS

1 INTRODUCGTION ..ottt sttt sttt ese e s et ebestestesbeateaseeneeneensenseneas 1
1.1 Approach toward this FeSEAICN..........cccueiieeciese e 1
1.2 Classroom as software engineering lab............cocooiiiiiii 3

2 EXPERIMENTAL METHODOLOGY ...ccooitiiiiiiiiiiniisiisiieieiee et 6
2.1 Collection of fOIKIOre dataccoueiieiiiiiiieiie e 8
2.2 DETECE STUAIES. ... viiiiitietiee et sb bbbttt 9

3 EXPERIMENTAL RESULTS.. ..ottt sttt sttt ettt snenneas 11

4 TOOL DEVELOPMENT ..ottt bbbttt 16
4.1 EXPEITMENT IMIANAGET ... e ivieiiiiie sttt sttt ettt neenne s 17
4.2 HPCBUGBASEevieiiii et st nee s 18
4.3 SUMIMAIY ...tttk ekt ekt e e ab e e be e e st e e e ke e e st e e eb et e mb e e ehe e e be e e ab e e beennn e e nneennes 20

5 THE ASC-ALLIANCE CASE STUDYooiiiiiiiiieiesie sttt 21
5.1 BACKGIOUNG ...ttt ettt ettt beebe e nreas 21
5.2 Goals and methodolOgycccveueiieiieieiieriee e 22
5.3 SOftwWare CharaCteriStiCSccuiuiiiiiieeieiie ettt 22
T S N 1] o1 (=2 J PSPPSR 22
5.5 MaChINE TArGELeeieceeciece e e e 23
5.6 Project OrganiZationcccooiiiiiiieieiesie ettt 24
T A - 1 ST URPRPRRSRT 24
5.8 Configuration ManagEMENT........ccceiiiiiiriieieierie ettt 24
5.9 SOTIWAIE USAJEveeviiiiie ittt ettt ettt e st e et e et e e te e nbaeenbeeateeentee e 25
5.10 USEIS 1ottt ettt bbbttt E e Rt bt e R b e b e e Rt e e beeenbeebeennee e 25
5,11 EXECULION TIMIBS. . .iitiitierieiieiesie it sttt sttt e ettt bbbt et sae bbb sbe b e eneeneeneas 25
512 Setting UP the INPUL.....c.veiiieieiee b 25
5.13 EXamining the OULPUL...........coveiieie ettt 26
5.14 DeVvelopPmMENT aCHIVITIES.oiiiiiiiiiieieieee e bbb 26
5.15 AddiNg NEW TEALUIESc.veiuieieeeie ettt ettt e reene e 26
516 TESTING. . .eeititetieiieie ettt bbb bbbttt n s 27
70 A A V10T PSRRI 27
5.18 DEDUGGING ... tetetieiieiieiieie ettt sttt b etttk b e et et ettt b ekt b e n s 28
T8 K T = {1 oo SR 29
5.20 Effort distribution and DOLIENECKS..........cceoiviiiiie i 29
5.21 General ODSEIVALIONS.oouiiiiiiiiisieie ettt 30
I £ Lo - £ o] PSSR 30
5,23 IMIPL oo bbbt bbbttt nas 30
5.24 Alternative to MPI: libraries/frameworks.........cccovieiieieiiesese e 31
5.25 Alternative to MPI: Other lanQUAGEScccvveieiieiecie et 31
5.26 Measures OF PrOUUCTIVITYcoeiiiiiiiieieierie et 32
5.27 ConcluSioNnS t0 CASE STUAYc.eeveiiiiiieeieciie sttt sttt sre e sreenneenes 33

6 UNDERSTANDING THE HIGH-PERFORMANCE COMPUTING COMMUNITY 34
6.1 Mismatches between computational science and SE............ccccceevevieviiie e, 39
6.2 What SE can do t0 help SCIENTISTScueieiiiiie e 41

T CONCLUSIONS. ..ottt sttt bbbttt bbb et e b e reeneeneens 43

7.1 Technology TranSTEr.......coui it 43

A =TS0 N T 1 1= o [R 43
ST (00 (=T 0 == (o o R 45
A ¥ o] [0 RS 45
8. REFERENCES ...ttt ettt e st e e st e e s st e e s s bbe e s sabaessbeaeeans 47
LS X O = (@ \\ D 1Y 1 SRR 50
APPENDIX A: LIST OF HPC FOLKLORE ...ttt sttt 51
APPENDIX B: TOOLS DEVELOPED FOR HPCS STUDIESccooiiiiiie e 52

LIST OF FIGURES

Figure 1: StUdies CONTUCTEA.eeiiiie ettt e e raeste e e sneennenreas 5
FIQUIE 2: RESEAICN PIAN ...t ettt ettt reenbeeneenreas 7
Figure 3:Folklore and defect SOlICItation PrOCESScueveiiieiieieeie et 9
Figure 4: Time saved using OpenMP over MPI for 10 programs. (MPI used less time in only

o7 LI = o 1Y) PSS 15
FIQUIE 52 TOOI STFUCTUIE ... ettt nee e 16
Figure 6: HPCBUQGBASE NOME PAJEeiveeiiieieeiesieeite e ste et ee e sta e essaeaesneesneenneaneens 19
Figure 7: Research process and t00l CAtEgOIIEScviieiiiiriiiieieee e 52
Figure 8: SyStem framMEWOIK..........ccveiiiie et enae e nre e 53
Figure 9: Administrator view of EXperiment Manager............ccovveieiieneniiesienesee e 57
Figure 10: GUI interface of raw data IMPOITErccccoeiieiieieciece e 58
FIQUIE 11 HPCBUQGBASE.....cviiiiiiiieteee ettt sttt st beenae e 60
FIGUIE 12: APIMIS ..ottt ettt et e et e et e e ne e st e et e e st e s aeenteeneeare e teaneenneens 61
FIQUIE 13: COUE VIZAI......coeiiiieieieece ettt bttt et neenne e 62
Figure 14: Code Vizard COIOr COUESuoiiiiiiiiiieie et 63

LIST OF TABLES

Table 1: Sample programming aSSIGNMENTScveiueieerieeiereereeeesee e eee e e e eeeseeseeeeesreesreeneens 6
Table 2: Mean, standard deviation, and number of subjects for computing speedup on game of

L PSSP PP PR URTRPRPRRPRPIN 11
Table 3: Productivity experiment: Game Of Life.........ccoovviiiiiiiiiiee e 12
Table 4: Some of the early classroom experiments on specific architectures....................... 13
Table 5: Multiple classroom studies for each technology ..o 13
Table 6: MPI program size compared to OpenMP program SiZ€cccveevvververeesieeseesesreeseeenns 14
Table 7: HPC defect ClasSITICALION.cciiiiiieieiiesiee e e 19
Table 8: HPC community attribULEScc.oiieiieie e 35

ACKNOWLEDGMENT

Several additional students worked on various aspects of this project including Patrick R.
Borek, Daniela Suares Cruzes, and Thiago Escudeiro Craveiro. We’d also like to acknowledge
the following faculty for allowing us to conduct experiments in their classes: Alan Edelman
[MIT], John Gilbert [UCSB], Mary Hall, Aiichiro Nakano, Jackie Chame [USC], Allan Snavely
[UCSD], Alan Sussman, Uzi Vishkin, [UMD], Ed Luke [MSU], Henri Casanova [UH], and
Glenn Luecke [ISU]. We would like to acknowledge Chuck Wight, Steve Parker, Anshu Dubey,
Edwin van der Wedie, Frank Ham, Gianluca laccarino, Dan Meiron, Michael Aivazis, Mark
Brandyberry and Robert Fiedler for providing us with the information contained in the ASC case
study.. We would also like to thank Robert VVoigt for creating the opportunity to conduct these
interviews.

SUMMARY

In order to understand how high performance computing (HPC) programs are developed, a
series of experiments, using students in graduate level HPC classes and various research centers,
were conducted at various locations in the US. In this report, we discuss this research, give some
of the early results of those experiments, and describe a web-based Experiment Manager and
related tools we are developing that allows us to run studies more easily and consistently at
universities and laboratories, allowing us to generate results that more accurately reflect the
process of building HPC programs.

This type of empirical research is novel for the HPC community however, so prior to
conducting rigorous full fractional factorial experiments with professionals, we ran a pilot
studies to debug the experimental methods and techniques. Our first research activity was
running a pre-pilot study aimed at understanding the issues involved and debugging our methods.
The setting for the pre-pilot study was a graduate level High Performance Computing class
taught by Jeffrey K. Hollingsworth at the University of Maryland. The students in this class were
taught the concepts associated with HPC, so it was an ideal place to begin evaluating the
performance of novice HPC developers. For most of the students in the class, it was their first
time developing a HPC software application. Fifteen students took part in the study, which
consisted of two assignments. In the first assignment, students were to create a sequential and
then a parallel solution using MPI for the “Game of Life” problem. Subjects were graded on, and
hence had incentive to focus on, the correct performance of both sequential and parallel versions
and the amount of speed-up achieved for the parallel version. In a second assignment, subjects
switched to OpenMP and had to devise a parallel version of the SWIM benchmark. Over 4 years,
we ran some 25 different studies in a variety of university settings in order to characterize the
development process for building HPC programs.

How time is measured can have a pronounced impact on the interpretation of results. We
have been conducting empirical studies to characterize how different variables affect
programmer effort in the domain of high performance computing. In the context of these studies,
we have sought a measure of effort that is both accurate and complete (i.e., captures all
programmer activities well). We show how a combination of self-reported and automatic
measures of effort data can be used for assessing confidence in results and estimating total effort.

To learn more about the process of developing software to run on HPC systems, we studied
five different software projects that develop such codes. These projects make up a group of
research centers known as the ASC-Alliance centers. Each center owns a large software project
which is focused on addressing a different problem in computational science. These centers are
provided with access to large-scale HPC systems located at various supercomputing centers.

To study these projects, we conducted interviews with high-level members of each project.
These project members were all involved in project management, software architecture, or
software integration. Our goals were to characterize product, project organization, and process,
both in terms of using the software and developing the software, and to identify particular
challenges faced by the developers. Note that we use the terms “developer”, “scientist”, and
“programmer” interchangeably in this report.

Vi

We evolved the Experiment Manager framework to mitigate the complexities of conducting
the above mentioned experiments. The framework is an integrated set of tools to support
software engineering experiments in HPC classroom (or professional) environments. While
aspects of the framework have been studied by others, the integration of all features allows for a
uniform environment that has been used in over 25 classroom studies over the past 4 years. The
framework supports the following.

1. Minimal disruption of the typical programming process. Study participants solve
programming tasks under investigation using their typical work habits, spreading out
programming tasks over several days. The only additional activity required is filling out some
online forms. Since we do not require them to complete the task in an alien environment or work
for a fixed, uninterrupted length of time, we minimize any negative impact on pedagogy or
subject overhead.

2. Consistent instruments and artifacts. Use of the framework ensures that the same types of
data will be collected and the same types of problems will be solved, which increases confidence
in meta-analysis across studies at different universities.

3. Centralized data repository with web interface. The framework provides a simple,
consistent interface to the experimental data for experimentalists, subjects, and collaborating
professors. This reduces overhead for all stakeholders and ensures that data is consistently
collected across studies.

4. Sanitization of sensitive data. The framework provides external researcher with access to
the data sets that have been stripped of any information that could identify subjects, to preserve
anonymity and comply with the protocols of human subject research as set out by Institutional
Review Boards (IRBs) at American universities.

vii

1 INTRODUCTION

The basic goal of the Defense Advanced Research Projects Agency (DARPA) High
Productivity Computing System (HPCS) program is to create a new generation of high
performance computers operating in the petascale range in number of FLOPS (10" floating point
operations per second). The program began in July 2001 when DARPA planned an
approximately 10-year program to build a petascale machine [1]. The role of productivity has
had a checkered history since that time.

During the initial phase from 2001 until 2004, Five vendors (IBM, SGI, Cray, HP and Sun)
were involved in initial design activities. The goal for these new machines, and new languages to
execute on them, was a ten-fold improvement in both execution time and development time as
measured from the start of the program.

In 2004 at the start of Phase 1, the number of vendors was reduced to three (IBM, Cray and
Sun) and the concept of productivity was changed. Led by Dr. Jeremy Kepner of Mitre, the
University of Maryland became involved and our role in HPCS began in the summer of 2004.
Pure counting of Floating Point Operations per Second (FLOPS) was recognized as not a valid
criteria for measuring productivity. Few programs achieve sustained execution rates at these high
levels — often achieving only 5%-10% of those peak performance rates. In addition, the time and
effort to build the programs to run on these machines was not part of the equation. Therefore, the
phrase “Time to solution = Development time + Execution time” became the catchword for
measuring productivity. The problem to solve, however, was what does “Development time”
really mean in the high performance computer arena?

In March of 2005 this initial 3-year grant started when the University of Maryland, aided by
the Fraunhofer Center for Experimental Software Engineering and Mississippi State University,
began to work with Dr. Kepner and his productivity team in order to understand the mechanisms
involved in building high performance codes. Our approach was to develop methods that could
be used to establish baseline productivity measures to measure the 2002 productivity as well as
the productivity for these new machines when they became operational in the 2010-2012
timeframe.

1.1 Approach toward this research

The HPCS program has goals of “providing a new generation of economically viable high
productivity computing systems for national security and for the industrial user community,” and
initiating “a fundamental reassessment of how we define and measure performance,
programmability, portability, robustness and ultimately, productivity in the High Performance
Computing (HPC) domain™.

In order to reassess the definitions and measures in a scientific domain it is necessary to study
the basis and source of those definitions and measures. These sources are usually found in the
related literature and various documentations existent in the community. However the large

amount of tacit information that is merely in people’s minds often remains neglected.

! http://www.highproductivity.org

http://www.highproductivity.org

Historically, there has been little interaction between the HPC and the software engineering
communities. The Development Time Working Group of the HPCS project was focused on
development time issues. The group has both software engineering researchers as well as HPC
researchers. The strategy of the working group was to apply empirical methods to study parallel
programming issues. We have applied similar methods in the past to researching development
time issues in other software domains [2].

Much of the literature in the Software Engineering community concerning programmer
productivity was developed with assumptions that do not necessarily hold in the HPC
community:

1. Inscientific computation insights culled from results of one program version often drives the
needs for the next. The software itself is helping to push the frontiers of understanding rather
than the software being used to automate well-understood tasks.

2. The requirements often include conformance to sophisticated mathematical models. Indeed,
requirements may often take the form of an executable model in a system such as
Mathematica, and the implementation involves porting this model to HPC systems.

3. "Usability" in the context of an HPC application development may revolve around
optimization to the machine architecture so that computations complete in a reasonable
amount of time. The effort and resources involved in such optimization may exceed initial
development of the algorithm.

Due to these unique requirements, traditional software engineering approaches for improving

productivity may not be directly applicable to the HPC environment.

As a way to understand these differences, we are developing a set of tools and protocols to
study programmer productivity in the HPC community. Our initial efforts have been to
understand the effort involved and defects made in developing such programs. We also want to
develop models of workflows that accurately explain the process that HPC programmers use to
build their codes. Issues such as time involved in developing serial and parallel versions of a
program, testing and debugging of the code, optimizing the code for a specific parallelization
model (e.g., Message Passing Interface (MPI) [3], Open Multi-processing (OpenMP) [4]) and
tuning for a specific machine architecture are all topics of study. If we have those models, we
can then work on the more crucial problems of what tools and techniques better optimize a
programmer’s performance to produce quality code more efficiently.

Since 2004 we have been conducting human-subject experiments at various locations across
the U.S. in graduate level HPC courses and with interviews with professional programmer at
HPC centers (Figure 1). Graduate students in a HPC class are fairly typical of a large class of
novice HPC programmers who may have years of experience in their application domain but
very little in HPC-style programming. Multiple students are routinely given the same assignment
to perform, and we conduct experiments to control for the skills of specific programmers (e.g.,
experimental meta-analysis) in different environments. Due to the relatively low costs, student
studies are an excellent environment to debug protocols that might be later used on practicing
HPC programmers.

1.2 Classroom as software engineering lab

The classroom is an appealing environment for conducting software engineering
experiments, for several reasons:

e Most researchers are located at universities. Being close to your subjects is often necessary to
obtain accurate results.

e Training can be integrated into the course. No extra effort is then required by the subjects
since there is the assumption that the training is a valuable academic addition to the
classroom syllabus.

e Required tasks can be integrated into the course.

e All subjects are performing identical programming tasks, which is not generally true in
industry. This provides an easy source for replicated experiments.

In addition to the results that are obtained directly by these studies, such experiments are also
useful for piloting experimental designs and protocols which can later be applied to industry
subjects, an approach which has been used successfully elsewhere (e.g., [5] [6] [7]).

While there are threats to validity of such studies by using students as subjects as proxies for
professional programmers (e.g., the student environment may not be representative of the ones
faced by professional programmers), there are additional complexities that are specific to
research in this type of environment. We encountered each of these issues when conducting
research on the effects of parallel programming model on effort in high-performance computing
[8]:

1. Complexity. Conducting an experiment in a classroom environment is a complex process
that requires many different activities (e.g., planning the experimental design, identifying
appropriate artifacts and treatments, enrolling students, providing for data collection, checking
for process compliance, sanitizing data for privacy, analyzing data). Each such activity identifies
multiple points of failure, thus requiring a large effort to organize and run multiple studies. If the
study is done at multiple universities in collaboration with other professors, these professors may
have no experience in organizing and conducting such experiments.

2. Research vs. pedagogy. When the experiment is integrated into a course, the
experimentalist must take care to balance research and pedagogy [9]. Studies must have minimal
interference with the course. If the students in one class are divided up into treatment groups and
the task is part of an assignment, then care must be taken to ensure that the assignment is of
equivalent difficulty across groups. Students who consent to participate must not have any
advantage or disadvantage over students who do not consent to participate, which limits
additional overhead required by the experiment. In fact, each university’s Institutional Review
Board (IRB), required in all USA universities performing experiments with human subjects, and
insists that participation (or non-participation) must have no effect on the student’s grade in the
course.

3. Consistent replication across classes. To build empirical knowledge with confidence,
researchers replicate studies in different environments. If studies are to be replicated in different
classes, then care must be taken to ensure that the artifacts and data collection protocols are
consistent. This can be quite challenging because professors have their own style of giving
assignments. Common projects across multiple locations often differ in crucial ways making
meta-analysis of the combined results impossible [10].

4. Participation overhead for professors. In our experience, many professors are quite
willing to integrate software engineering studies into their classroom environment. However, for
professors who are unfamiliar with experimental protocols, the more effort required of them to
conduct a study, the less likely it will be a success. In addition, collaborating professors who are
not empirical researchers may not have the resources or the inclination to monitor the quality of
captured data to evaluate process conformance. Therefore, empirical researchers must try to
minimize any additional effort required to run an empirical study in the course while ensuring
that data is being captured correctly.

The required IRB approval, when attempted for the first time, seems like a formidable task.
Help in understanding IRB approval would greatly aid the ability of conducting such research
experiments.

5. Participation overhead for students. An advantage of integrating a study into a
classroom environment is that the students are already required to perform the assigned task as
part of the course, so the additional effort involved in participating in the study is much lower
than if subjects were recruited from elsewhere. However, while the additional overhead is low, it
is not zero. The motivation to conform to the data collection process is, in general, much lower
than the motivation to perform the task, because process conformance cannot be graded. In
addition, the study should not subvert the educational goals of the course. Putting the experiment
in the context of the course syllabus is never easy.

This can be particularly problematic when trying to collect process data from subjects (e.g.
effort, activities, defects), especially for assignments that take several weeks. (e.g., We saw a
reduction in process conformance over time when subjects had to fill out effort logs over the
course of multiple assignments).

6. Automatic data collection of software process. To reduce subject overhead and increase
data accuracy, it is possible to collect data automatically from the programmer’s environment.
Capturing data at the right level of granularity is difficult. All user-generated events can be
captured (keyboard events, mouse events), but this produces an enormous volume of data that
may not abstract to useful information. Allowing this raw data to be used can create privacy
issues, such as revealing account names, with the ability to then determine how long specific
users took to build a product or how many defects they made.

All development activities taking place within a particular development environment (e.g.,
Eclipse [11]) simplifies the task of data collection, and tools exist to support such cases (e.g.
Marmoset [12]). However, in many domains development will involve a wide range of tools and
possibly even multiple machines. For example in the domain of high-performance computing,
preliminary programs may be compiled on a home PC, final programs are developed on the
university multiprocessor and are ultimately run on remote supercomputers at a distant
datacenter. Programmers typically use a wide variety of tools, including editors, compilers, build
tools, debuggers, profilers, job submission systems, and even web browsers for viewing
documentation.

7. Data management. Conducting multiple studies generates an enormous volume of
heterogeneous data. Along with automatically collected data and manually reported data,
additional data includes versions of the programs, pre- and post-questionnaires, and various
quality outcome measures (e.g. grades, code performance, defects). Because of privacy issues,
and to conform to IRB regulations, all data must be stored with appropriate access controls, and
any exported data must be appropriately sanitized. Managing this data manually is labor-
intensive and error-prone, especially when conducting studies at multiple sites.

Limitations of student studies include the relatively short programming assignments possible
due to the limited time in a semester and the fact these assignments must be picked for the
educational value to the students as well as their investigative value to the research team.

uluc U Chicago
Agtcizl?;{ﬁ:-gnl:;e Asg_:ﬁ?:me ASC-Alliance ASC-Alliance
= MIT
w v/ NH ? 3 studies
ucse / 1 e 3 3
3 studies OR nn N ‘b", ’ ‘,‘t..t
Oan By EREN! { S
! ‘ A o] \ N
CalTech | - ‘11 » N.
ASC-Alliance — TS B Mo
IR AR
Usc 3 1 11 studies
5 studies m\ _
l -
UcsD ke k
1 study . g
ek rg
U Hawaii SDsC lowa State Mississippi State
1 study Multiple 1 study 2 studies
studies

Figure 1: Studies conducted

In this report, we present both the methodology we have developed to investigate
programmer productivity issues in the HPC domain (Section 2), some initial results of studying
productivity of novice HPC programmers (Section 3).

2 EXPERIMENTAL METHODOLOGY

In each class, we obtained consent from students to be part of our study. There is a
requirement at every U.S. institution that studies involving human subjects must be approved by
that university’s Institutional Review Board (IRB). The nature of the assignments was left to the
individual instructors for each class since instructors had individual goals for their courses and
the courses themselves had different syllabi. However, based on previous discussions as part of
this project, many of the instructors used the same assignments (Table 1), and we have been
collecting a database of project descriptions as part of our Experiment Manager website (See
Section 3.1). To ensure that the data from the study would not impact students’ grades (and a
requirement of almost every IRB), our protocol quarantined the data collected in a class from
professors and teaching assistants for that class until final grades had been assigned.

Table 1: Sample programming assignments

Embarrassingly parallel:

Buffon-Laplace needle problem, Dense matrix-vector multiply

Nearest neighbor:

Game of life, Sharks & fishes, Grid of resistors, Laplace's equation, Quantum
dynamics

All-to-all:

Sparse matrix-vector multiply, Sparse conjugate gradient, Matrix power via prefix
Shared memory:

LU decomposition, Shallow water model, Randomized selection, Breadth-first search
Other:

Sorting

We need to measure the time students spend working on programming assignments with the
task that they are working on at that time (e.g. serial coding, parallelization, debugging, tuning).
We used three distinct methods: (1) explicit recording by subject in diaries (either paper or web-
based); (2) implicit recording by instrumenting the development environment; and (3) sampling
by an operating system installed tool (e.g., Hackystat [13]). Each of these approaches has
strengths and limitations. But significantly, they all give different answers. After conducting a
series of tests using variations on these techniques, we settled on a hybrid approach that
combines diaries with an instrumented programming environment that captures a time-stamped
record of all compiler invocations (including capture of source code), all programs invoked by
the subject as a shell command, and interactions with supported editors. Elsewhere [14], we
describe the details of how we gather this information and convert it into a record of programmer
effort.

After students completed an assignment, the data was transmitted to the University of
Maryland, where it was added to our Experiment Manager database. Looking at the database
allows post-project analysis to be conducted to study the various hypotheses we have collected
via our folklore collection process.

For example, given workflow data from a set of students, the following hypotheses that are
the subjective opinion of many in the HPCS community, collected via surveys at several HPCS
meetings, can be tested [15]:

Hypothesis 1: The average time to fix a defect due to race conditions will be longer in a
shared memory program compared to a message-passing program. To test this hypothesis we
can measure the time to fix defects due to race conditions.

Hypothesis 2: On average, shared memory programs will require less effort than message
passing, but the shared memory outliers will be greater than the message passing outliers. To
test this hypothesis we measure the total development time.

Hypothesis 3: There will be more students who submit incorrect shared memory programs
compared to message-passing programs. To test this hypothesis we can measure the number of
students who submit incorrect solutions.

Hypothesis 4: An MPI implementation will require more code than an OpenMP
implementation. To test this hypothesis we can measure the size of code for each mplementation.

The classroom studies are the first part of a larger series of studies we are conducting (Figure
2). We first run pilot studies with students. We next conduct classroom studies, and then move
onto controlled studies with experienced programmers, and finally conduct experiments in situ
with development teams. Each of these steps contributes to our testing of hypothesizes by
exploiting the unique aspects of each environment (i.e., replicated experiments in classroom
studies and multi-person development with in situ teams). We can also compare our results with
recent studies of existing HPC codes [16].

HEC community provides questions to study that lead
to successively Iarger and more complex experiments

£> \‘{ﬂ ‘|- . T
] Case studies” T
2E5)

R SR

HEC community Beliefs 7 *\——\\
a % |compactappllcatlons

Problem Scale

Team projects &

Class projects

Single programmer (expert studies)

Single programmer e
classroom Studies and
Observational studies®5S asslg”mems

Kernels)

Program Duration
Evolving measurements, Models, Hypotheses

Figure 2: Research plan

2.1 Collection of folklore data

One of the main goals of the development time working group of HPCS project is to leverage HPC community’s
HPC community’s knowledge of development time issues (

Figure 3). In order to do so, we are soliciting expert opinion on issues related to HPC
programming by collecting elements of folklore through surveys, generating discussion among
experts on these elements of the lore to increase precision of statements and to measure degree of
consensus and finally generate testable hypotheses based on the lore that can be evaluated in
empirical studies.

Before starting the exploratory experiment of collecting peoples’ anecdotal beliefs through
surveys, we needed an initial set of such anecdotes to both encourage thinking and also use as
examples of what we are interested in.

To gather the folklore in HPC, a member of the study group, who is an HPC professor,
conducted an informal scan of several sources including lecture notes used in introductory HPC
classes at the University of Maryland as well as scanning the Internet for related keywords
(including "HPC tribal lore” and "HPC folklore™). The goal of this process was not to be
exhaustive, but instead to gather a sense of the type of information that a beginning HPC
programmer might find. This initial list of 10 ideas (the left column of the table in Appendix 1)
was recorded and used as the basis for our first survey.

We then asked 7 HPC specialists and professors who regularly teach HPC classes to comment
on the initial list. They were asked to give an “agree”, “disagree” or “don’t know” answer to
each candidate, give their comments or change suggestions and add any folklore that they are
aware of but is not on the list.

The folklore number 11 in Appendix 1 was added by one of the participants at this stage.
Generally the comments revolved around clarifying the domain to which the bit of lore applied.
For example was the bit of lore talking about a user programming model such as OpenMP or
hardware architecture such as a multi-threaded machine.

In order to clarify the questionable points we scheduled a discussion session among the
participants. This discussion resulted in some modifications in the way folklore sentences were
phrased. The right column of the table in Appendix 1 is the result of this modification.

HPC Literature

N

Initial List of Folklore Initial list of Defects

Experimental Studies
Refined list of Folklore Refined list of defects
with their fre quency ¢
‘ and severity

- Collected Data
List of testable hypotheses

Data Analysis

and investigation

k|

Results:

® Final set of hypotheses

* {Juantitative measures on
dehugging

Figure 3:Folklore and defect solicitation process

At some point during the discussion, the participants agreed that “MPI programs don't run
well when you use lots of small messages because you get latency-limited”. In order to include
this in the folklore list, the lore number 12 was added to the list.

At the next step of the study, a survey form was compiled from the current list of 12 folklore
and distributed to the participants at the “High Productivity Computing Systems, Productivity
Team Meeting” held in January 2005. In order to avoid any bias, some of the randomly selected
lore were rephrased to imply the logically inverse sentence. Two sets of survey forms were
compiled and distributed randomly.

2.2 Defect studies

As part of our effort to understand development issues, our classroom experiments have
moved beyond effort analysis and looked at the impact of defects (e.g. incorrect or excessive
synchronization, incorrect data decomposition) on the development process. By understanding
how, when, and the kind of defects that appear in HPC codes, tools and techniques can be
developed to mitigate these risks to improve the overall workflow. As we have shown [14],
automatically determining workflow is not precise, so we worked on a mixture of process
activity (e.g., coding, compiling, executing) with source code analysis techniques. The process of
defect analysis we built consisted of the following main activities:

2.
3.

Analysis:

Analyze successive versions of the developing code looking for patterns of changes
represented by successive code versions (e.g., defect discovery, defect repair, addition of new
functionality).

Record the identified changes.

Develop a classification scheme and hypotheses.

For example, a small increase in source code, following a failed execution, following a large

code insertion could represent the pattern of the programming adding new functionality followed
by a test and then defect correction. Syntactic tools that find specific defects can be used to aid
the human-based heuristic search for defects.

Verification:

We then need to analyze these results at various levels. Verification consists of the following
steps, among others:

1.

2.
3.

4.

If we can somehow obtain the “true” defect sets, we can directly compare our analysis results
with them to evaluate the analysis results quantitatively.

Multiple analysts can independently analyze the source code and record identified defects.
Examine individual instances of defects to check if each defect is correctly captured and
documented.

Provide defect instances and classify them into one of the given defect types. This can be
used to check the consistency of the classification scheme.

[25] explores this defect methodology in greater detail.

10

3 EXPERIMENTAL RESULTS

An early result needed to validate our process was to verify that students could indeed
produce good HPC codes and that we could measure their increased performance. Table 2 is one
set of data that shows that students achieved speedups of approximately 3 to 7 on an 8-processor
HPC machine. (CxAy means class number x, assignment number y. This coding was used to
preserve anonymity of the student population.)

Table 2: Mean, standard deviation, and number of subjects for computing speedup on

game of life
Data Programming Speedup on 8 processors
set Model
Speedup measured relative to serial version:
ClAl MPI mean 4.74, sd 1.97, n=2
C3A3 MPI mean 2.8, sd 1.9, n=3
C3A3 OpenMP mean 6.7, sd 9.1, n=2
Speedup measured relative to parallel version run on 1
processor:
CO0Al MPI mean 5.0, sd 2.1, n=13
Cl1A1 MPI mean 4.8, sd 2.0, n=3
C3A3 MPI mean 5.6, sd 2.5, n=5
C3A3 OpenMP mean 5.7, sd 3.0, n=4

Measuring productivity in the HPC domain is part of understanding HPC workflows;
however, what does productivity mean in this domain [19]? The following is one model that we
can derive from the fact that the critical component of HPC programs is the speedup achieved by
using a multiprocessor HPC machine over a single processor [26]:

Reference Execution Time
Speedup =
Paralle| ExecutionTime

Réﬁes peedup p

Productivity = ———— = 1 = PxE
Relative Effort /e

Parallel Effort

Relafive Effort = Reference Effort

Rho (p) represents the relative speedup achieved, while epsilon (g) represents the effort to
produce a serial version of the program. Productivity is defined as the relative speedup of a
program using an HPC machine compared to a single processor divided by the relative effort to
produce the HPC version of the program divided by the effort to produce a single processor
version of the program.

11

Table 3 shows the results for one group of students programming the Game of life (a simple
nearest neighbor cellular automaton problem where the next generation of “life” depends upon

Problem

serial

MPI

OpenMP

Matlab*p

XMT-C

Co-Array
Fortran

uPc

Hybrid MPI-
OpeniP

Game of life

4

1

2

SWIM

Buffon-Laplace

3

Laplace's equation

1

Sharks & fishes

I Gl i L]

Grid of resistors

Matrix power via
prefix

LU Nl o B)

i L L e A e S)

Sparse conjugate-
gradient

Dense matriz-vector
rultiply

Sparse matrix-vectar
multiply

Sarting

Quantum dynamics

Malecular dynamics

Randomized
selection

Breadth-first search

LU decomposition

Shortest path

Search for intelligent
puzzles

1

surrounding cells in a grid and a popular first parallel program for HPC classes) [20]. The data
shows that our definition of productivity had a negative correlation compared to both total effort
and HPC execution time, and a positive correlation compared to relative speedup. While the
sample size is too small for a test of significance, the relationships all indicate that productivity
does behave as we would want a productivity measure to behave for HPC programs, i.e., good

productivity means lower total effort, lower HPC execution time and higher speed up.

Table 3: Productivity experiment: Game of Life

shows the distribution of programming assignments across different programming models
for the first 7 classes (using the same CxAy coding used in Table 2). Multiple instances of the
same programming assignment lend the results to meta-analysis to be able to consider larger
populations of students.

12

summarizes the number of times each technology has been applied to each programming
problem. More details are given in [14] and [21].

Problem serial MPI OpenMp Matlab*p XMT-C C;;i:;an"’ uPc H%;Ldnm;l_
Game of life 4 g 2 1 2 2
SWIM 1
Buffon-Laplace 2 3 2 3
Laplace's equation 1 1 1; ik
Sharks & fishes 1 2 2 1
Grid of resistors 1 1 1 1
Eﬂrztfil’;x power via 3 1 1 1
S : : 1
Enirlwtsi.shr;natrnf vector 1 1 1
fnz?t:;?ymatnx—uector 1 1 2
Sarting 2 3 1 2
Quantum dynamics 2
Malecular dynamics 1
e 1
Breadth-first search 1
LU decomposition 1
Shortest path 1
Search for intelligent 1
puzzles
Seria | MPl | OpenM | Co- StarP | XMT]
I P Array
Fortran
Nearest-Neighbor Type Problems Tik.)le
Game of Life C3A3 | C3A3 | C3A3 Sor-ne
COAl of the
. . ClAl early
Grid of Resistors C2A2 | C2A2 | C2A2 C2A2 classr
Sharks & Fishes C6A2 | C6A2 C6A2 oom
Laplace’s Eq. C2A3 C2A3 experi
SWIM COA2 ments
Broadcast Type Problems on
LU Decomposition C4A1 specifi
Parallel Mat-vec C3A4 c
Quantum Dynamics C7Al archit
Embarrassingly Parallel Type Problems ecture
Buffon-Laplace Needle C2A1 | C2A1 C2A1 S
C3Al1 | C3Al C3Al Table
Other 4:
Parallel Sorting C3A2 | C3A2 C3A2 Multi
Array Compaction CHAl ple
Randomized Selection C5AZ classr

13

oom studies for each technology

Seria | MPl | OpenM | Co- StarP | XMT|
I P Array
Fortran
Nearest-Neighbor Type Problems
Game of Life C3A3 | C3A3 | C3A3
COAl
Cl1A1
Grid of Resistors C2A2 | C2A2 | C2A2 C2A2
Sharks & Fishes C6A2 | C6A2 C6A2
Laplace’s Eq. C2A3 C2A3
SWIM COA2
Broadcast Type Problems
LU Decomposition C4A1
Parallel Mat-vec C3A4
Quantum Dynamics C7Al
Embarrassingly Parallel Type Problems
Buffon-Laplace Needle C2A1 | C2A1 C2A1
C3Al | C3A1 C3Al
Other
Parallel Sorting C3A2 | C3A2 C3A2
Array Compaction C5A1
Randomized Selection C5AZ

14

For example, we can use this data to partially answer an earlier stated hypothesis (Hyp. 4: An
MPI implementation will require more code than an OpenMP implementation). Table 5 shows
the relevant data giving credibility to this hypothesis (but this data is not statistically significant

yet)

Table 5: MPI program size compared to OpenMP program size

Dataset Hggéf mming Application Lines of Code
Serial mean 175, sd 88, n=10
C3A3 | MPI Game of Life | mean 433, sd 486, n=13
OpenMP mean 292, sd 383, n=14
Serial 42 (given)
C2A2 | MPI Resistors mean 174, sd 75, n=9
OpenMP mean 49, sd 3.2, n=10

1. An alternative parallel programming model is the Parallel Random Access Machine (PRAM)
model [22], which supports fine-grained parallelism and has a substantial history of
algorithmic theory. Explicit Multi-threading C (XMT-C) [23] is an extension of the C
language that supports parallel directives to provide a PRAM-like model to the programmer.
A prototype compiler exists that generates code which runs on a simulator for an XMT
architecture. We conducted a feasibility study in a class to compare the effort required to
solve a particular problem. After comparing XMT-C development to MPI, on average,
students required less effort to solve the problem using XMT-C compared to MPI. The
reduction in mean effort was approximately 50%, which was statistically significant at the
level of p<.05 using a t-test [24].

2. While OpenMP generally required less effort to complete (Figure 4), the comparison of
defects between MPI and OpenMP, however, did not yield statistically significant results,
which contradicted a common belief that shared memory programs are harder to debug.
However, our defect data collection was based upon programmer-supplied effort forms,
which we know are not very accurate. This led to the defect analysis mentioned previously
[25], where we intend to do a more thorough analysis of defects made.

15

100

Savings (%)

[
-100 -50

10 20 30 40

Effart difference (hours)

-10 0

1 2 3 4 5 6 7 8 9 10

Figure 4: Time saved using OpenMP over MPI for 10 programs. (MP1 used less time in
only case 1 above)

3. We collected low-level behavioral data from developers in order to understand the
"workflows" that exist during HPC software development. A useful representation of HPC
workflow could both help characterize the bottlenecks that occur during development and
support a comparative analysis of the impact of different tools and technologies upon
workflow. One hypothesis we are studying is that the workflow can be divided into one of
five states: serial coding, parallel coding, testing, debugging, and optimization.

In a pilot study at the University of Hawaii in Spring of 2006, students worked on the
Gauss-Seidel iteration problem using C and POSIX threads (or PThreads) [17] in a
development environment that included automated collection of editing, testing, and
command line data using Hackystat. We were able to automatically infer the "serial coding"
workflow state as the editing of a file not containing any parallel constructs (such as MPI,
OpenMP, or PThread calls), and the "parallel coding" workflow state as the editing of a file
containing these constructs. We were also able to automatically infer the "testing" state as the
occurrence of unit test invocation using the CUTest tool. In our pilot study, we were not able
to automatically infer the debugging or optimization workflow states, as students were not
provided with tools to support either of these activities that we could instrument.

Our analysis of these results leads us to conclude that workflow inference may be possible
in an HPC context. We hypothesize that it may actually be easier to infer these kinds of
workflow states in a professional setting, since more sophisticated tool support is often
available which can help support inferencing regarding the intent of a development activity.
Our analyses also cause us to question whether the five states that we initially selected are
appropriate for all HPC development contexts. It may be that there is no "one size fits all"
set of workflow states, and that we will need to define a custom set of states for different
HPC organizations in order to achieve our goals.

Additional early classroom results are given in [8].

16

4 TOOL DEVELOPMENT

In order to conduct this research, a series of tools were developed (Figure 5):
1. Websites
1. HPCBugBase.org — Defect database
2. http://hpcs.cs.umd.edu — HPCS Development time website
2 Data collection
3. UMDINST - Shell-level time stamps from compilation and execution
4. Experiment Manager - Collect self-reported effort data
5. Shell Logger — Capture all shell commands
6. Hackystat — Low level time stamps for many tools
3 Data conversion
7. Raw data importer — Import UMDINST data to database
8. DB Sanitizer — Remove privacy data from DB
4 Visualization and analysis
9. Automatic Performance Measurement System — Automatically run scripts of programs.
10. UCSB execution harness — Execute programs under controlled conditions
11. CodeVizard — View source code evolution
12. Data Analyzer — Visualization of UMDINST and Experiment Manager data
13. Activity graph — View workflow information

Local server: UMD Server: UMD server:
capture data store data analyze data
A A A
'S N hYs N
UM Experiment HPDBugBase
Technician Managf riEn ieI=

Hackystat Server
cji Upload N
UM Workflow
instal
Professor Create a coutsg Data Analysis
& \ Monitor registratign UM Admin Interfaces
ﬂ: l HPC Machine ;% . ﬁ/\\
SQL Queries || Download

Umdinst | [cq Analysis
Write/run COdfl- Hac;ystat Log .1 re—
ﬁ ploa aster
s Sanitized
student/ (A0Sl Joo——> | DB | me——f

Results

7 Sanitized
Sign up for accountkey data
Manual online logs UM Data

questionnaire Analysis
&—/ Environment

Figure 5: Tool structure

The websites (1.1, 1.2) allow for others to track our research and collect defects via a wiki. The
HPCBugBase is described in more details in Section 4.2 below.

http://hpcs.cs.umd.edu

The data collection tools (2.3 to 2.6) are focused around the UMD experiment manager,
explained in section 4.1 that follows. Hackystat is a product of Philip Johnson of the University
of Hawaii, but we have worked with Philip in addressing issues his tool originally didn’t process.
The data conversion tools (3.7, 3.8) are internal conversion tools within the experiment manager
used to handle data from a variety of sources and to handle privacy issues required by federal
and state laws. The visualization tools (4.9 through 4.13) are still under development, and the
lack of continued funding prevents their completion. A prototype of the data analyzer (tool 4.12)
is part of the Experiment Manager explained below.

4.1 Experiment Manager

As stated earlier, we collected effort data from student developments and also collected data
from professional HPC programmers in 3 ways: manually from the participants, automatically
from timestamps at each system command, and automatically via the Hackystat tool, sampling
the active task at regular intervals. All 3 methods provided different values for “effort,” and we
developed models to integrate and filter each method to provide an accurate picture of effort.

Our collection methods evolved one at a time. To simplify the process of students (and other
HPC professionals) providing needed information, we developed an experiment management
package (Experiment Manager) to more easily collect and analyze this data during the
development process. It includes effort, defect and workflow data, as well as copies of every
source program during development. Tracking effort and defects should provide a good data set
for building models of productivity and reliability of HPC codes.

We evolved the Experiment Manager framework (Figure 5) to mitigate the complexities
described in the previous section. The framework is an integrated set of tools to support software
engineering experiments in HPC classroom environments. While aspects of the framework have
been studied by others, the integration of all features allows for a uniform environment that has
been used in over 25 classroom studies over the past 4 years. The framework supports the
following.

1. Minimal disruption of the typical programming process. Study participants solve
programming tasks under investigation using their typical work habits, spreading out
programming tasks over several days. The only additional activity required is filling out some
online forms. Since we do not require them to complete the task in an alien environment or work
for a fixed, uninterrupted length of time, we minimize any negative impact on pedagogy or
subject overhead.

2. Consistent instruments and artifacts. Use of the framework ensures that the same types of
data will be collected and the same types of problems will be solved, which increases confidence
in meta-analysis across studies at different universities.

3. Centralized data repository with web interface. The framework provides a simple,
consistent interface to the experimental data for experimentalists, subjects, and collaborating
professors. This reduces overhead for all stakeholders and ensures that data is consistently
collected across studies.

4. Sanitization of sensitive data. The framework provides external researcher with access to
the data sets that have been stripped of any information that could identify subjects, to preserve
anonymity and comply with the protocols of human subject research as set out by Institutional
Review Boards (IRBs) at American universities.

18

The Experiment Manager has 3 components:

1. UMD server: This web server is the entry portal to the Experiment Manager for students,
faculty and analysts and contains the repository of collected data.

2. Local server: A local server is established on the user machine (e.g., the one used by students
at a university) that is used to capture experimental data before transmission to the University
of Maryland.

3. UMD analysis server: A server stores sanitized data available to the HPCS community for
access to our collected data. This server avoids many of the legal hurdles implicit with using
human subject data (e.g., keeping student identities private).

For the near future, our efforts will focus on the following tasks:

e Evolve the interface to the Experiment Manager web-based tool to simplify use by the
various stakeholders (i.e., roles).

e Continue to develop our tool base, such as the defect data base and workflow models.

e Build our analysis data base including details of the various hypotheses we have studied
in the past.

e Evolve our experience bases to generate performance measures for each program
submitted in order to have a consistent performance and speedup measure for use in our
workflow and time to solution studies.

Further details of the Experiment Manager are covered in [18].

4.2 HPCBugBase

A database and corresponding web-based tool has been created to collect and manage defects
found in HPC programs. The tool is at http://www.HPCBugBase.org. It is a public wiki allowing
for the creation of a defect-based experience base. Figure 6 is the home page of this bug base.
Table 6 presents the initial defect classification taxonomy being developed. More information
about the HPC Bug Base is found is [25] and [27].

19

http://www.HPCBugBase.org

<2 Main Page - HPCBugBase - Microsoft Internet Explorer Q@g|
Fle Edit Wew Favorites Tools Help ﬂ'
«, > ﬂ \ELI o /.-) Searc ‘;:(Fawarites = (o] ~ ﬁ
Address 2:]http:,l',l'www.hpchugbase.org,l'index.php,l'Main_F‘age v a Go Links **
2 Login/ create account ~
submit feedhack article discussion edit history
Main Page
Introduction HPCBugBase Menu
HPCBugBase i
g YWelcome to HFCEBugBase &, an expe.rlen.ce hase for. Submit feedback
navigation software defects (bugs) that are recurring in the damain))
= Main Page of high pedformance computing (HPC). We are callecting | ® Submitfeedhack onthig,
= Recentchanges "patterns" of functional bugs, performance bottlenecks, page
= Random page portability problems, bad practices, etc. in HPC
= Help applications through empirical study, so that you can Overview
LT access and share the information about them as easily ® Crerview of HPC Defect
as possible. Patterns
Since HPCBugBase is a Wiki, anyona interested can = Howto use this
contribute ta the content. Wye strongly encourage you to Experience hase?
heln s enrich the knnwdedne by suhmittine woor = Whatare HPC defects” v
&] Done # Internet
Figure 6: HPCBugBase home page
Table 6: HPC defect classification
Top-level defect type Sub-types Brief definition

Use of parallel
language features

Erroneous use of parallel language
features

Space decomposition -

Incorrect mapping between the
problem space and the problem
memory space

/O hotspots

Side-effect of parallelization

Serial constructs causing
correctness and performance

(hidden serialization) Hidden serialization in defects when accessed in
library functions parallel contexts
Deadlock

Synchronizati
ynchronization REEE

Incorrectfunnecessary
synchronization

Message scheduling
Load balancing
Failure to exploit locality
Excessive synchronization

Communicationfcomputation
ratio

Scalability problems
Memory hierarchy

Performance

Performance defects in parallel
contexts

Memory allocation

Memory management
Memory cleanup

Inadequate memory management

Algorithm -

Program logic not matching the
intended purpose of the code

Environment -

Failure to understandfuse code
written by other people (library
code)

20

43 Summary

During the first three of the four years of this project, we developed a methodology for
running HPC experiments in a classroom setting to obtain results we believe are applicable to
HPC programming in general. We started to look at larger developments and look at large
university and government HPC projects in order to increase the confidence on the early results
we obtained with students.

Our development of the Experiment Manager system and HPC bug base allowed us to more
easily expand our capabilities in this area. The Experiment Manager permits others to run such
experiments on their own in a way that allows for the appropriate controls of the experiment so
that results across classes and organization at geographically diverse locations can be compared
in order to get a thorough understanding of the HPC development model.

21

5 THE ASC-ALLIANCE CASE STUDY

Computational scientists face many challenges when developing software that runs on large-
scale parallel machines. However, their software development processes have not previously
been studied in much detail by software engineering researchers. To better understand the nature
of software development in this context, we examined five large-scale computational science
software projects, known as the Accelerated Scientific Computing (ASC)-Alliance centers
(Section 5.1). We conducted interviews with project leads from all five of the centers to gain
insight into the nature of the development processes of large-scale parallel code projects, and to
identify issues in the current state-of-the-practice that reduce programmer productivity.

“Computational science” refers to the application of computers to advance scientific research
through the simulation of physical phenomena where experimentation would be either
prohibitively expensive or simply not possible. Advancement of scientific research depends upon
the ability of these scientists to develop software productively, and is therefore of interest to
software engineering researchers. However, there are many differences in software development
process in this domain compared to other domains such as IT. One major difference is that
scientific software can be very computationally demanding and may require the use of the most
powerful machines available today, which are sometimes referred to as high-end computing
(HEC) systems or supercomputers. These systems present some unique challenges to software
development.

To learn more about the process of developing software to run on HPC systems, we studied
five different software projects that develop such codes?. These projects make up a group of
research centers known as the ASC-Alliance centers. Each center owns a large software project
which is focused on addressing a different problem in computational science. These centers are
provided with access to large-scale HPC systems located at various supercomputing centers.

To study these projects, we conducted interviews with high-level members of each project.
These project members were all involved in project management, software architecture, or
software integration. Our goals were to characterize product, project organization, and process,
both in terms of using the software and developing the software, and to identify particular
challenges faced by the developers. Note that we use the terms “developer”, “scientist”, and
“programmer” interchangeably.

5.1 Background

The five ASC-Alliance centers were formed around 1997 by the National Nuclear Security
Agency (NNSA, an agency within the Department of Energy) to develop computational
simulation as a credible method of scientific research. The major project at each center is focused
on solving one particular scientific problem by developing multi-physics, coupled applications.
This refers to the simulation of different aspects of physical phenomena (e.g. solid mechanics,
fluid mechanics, combustion), which are then “coupled” together to form a single simulation.
The five centers are:

e Center for Simulating the Dynamic Response of Materials, California Institute of Technology
0 Goal: simulate the response of materials to strong shocks

Z In the HEC community, scientific computer programs are referred to as “codes”

22

e Center for Integrated Turbulence Simulations, Stanford University
0 Goal: simulate full-scale jet engines
e Center for Astrophysical Thermonuclear Flashes, University of Chicago
0 Goal: simulate thermonuclear burn of compact stars
e Center for the Simulation of Advanced Rockets
o0 Goal: simulate solid propellant rockets
e Center for Simulation of Accidental Fires & Explosions, University of Utah
0 Goal: simulate fires in contained vessels.

5.2 Goals and methodology

Our goals for conducting this study were to characterize which scientific programming
activities are time-consuming and problematic, common problems that scientific programmers
face, and the impact of software technologies on developer effort.

We conducted this study within the context of the DARPA High Productivity Computing
Systems (HPCS) program. In our earlier work, we ran controlled experiments to evaluate the
effect of parallel programming language on programmer effort and program performance, using
students from graduate-level parallel computing courses [8]. However, without empirical data
on how scientific codes are actually developed, we had no larger context for interpreting our
results. In particular, we did not know whether a new parallel programming language would
address the major problems that the developers faced, or whether they would adopt a new
language if given the opportunity.

To conduct this study, we began by distributing a pre-interview questionnaire to each center
that asked for some basic information about the project. Next, we conducted a telephone
interview with one or two of the technical leads on the project. From this interview, we generated
a summary document, which was sent back to the technical leads for review and corrections.

5.3 Software characteristics

While our main object of study was the software development process of the scientists, we
first wanted to characterize the product that they were working on, so we had some context for
the software environment that the developers were working in. We asked about attributes of the
software (information about the size of the codes, degree of code reuse via libraries,
organizational structure of the code), and the intended machine target (what kinds of machines
the codes are intended to run on).

5.4 Attributes

The size of the codes range from 100-500 Kilosource lines of code (KLOC). Most of the
codes are written as a mixture of C/C++ and Fortran, with one code being a pure Fortran
implementation. One code uses a Python scripting layer that provides an interface for running the
application. With one exception, core elements of these projects evolved from pre-existing
codes.

23

All codes make use of the MPI library to achieve parallelism. In addition, each code makes
use of external libraries, for features such as 1/0, mesh operations — including adaptive mesh
refinement, computational geometry, linear algebra, and tools for solving sparse linear systems
and systems modeled by partial differential equations.

While these codes use parallel libraries which sit atop MPI, developers were still required
write raw MPI code to achieve desired functionality. Therefore, they must deal with the
additional complexities that are well-known in writing message-passing applications. Some of
the codes use a layered approach which hides the details of message-passing, so that a
programmer can add additional functionality without writing MPI code. However, these
abstraction layers had to be written from scratch.

Each code is organized into independent subsystems, and the subsystems are maintained by
separate individuals or small groups. All codes use a component-based architecture to minimize
coupling between individual subsystems. In several of the projects, these independent
subsystems are almost like separate projects: they can run as standalone applications and may
incorporate new features that are independent of the larger, coupled application. Since almost all
of the codes involve multiple programming languages, they must deal with language
interoperability issues. (The one exception, a pure Fortran application, once used a Python
framework to drive the application but abandoned it because of the difficulty in porting a hybrid
Python/Fortran application to multiple platforms). One project built their component framework
around the Common Component Architecture (CCA), which is a community effort to simplify
the task of building such multi-language, coupled codes. In that case, the chief software architect
was an early adopter of this technology and is actively involved with the larger CCA effort. The
other projects developed their own communication frameworks.

5.5 Machine target

The codes are designed to run on “flat” MPI-based machines (i.e. all communication takes
place through message-passing, even if some processes share physical memory). While all of the
codes currently run on clusters of symmetric multiprocessors (SMPs), none of them have been
explicitly optimized to take advantage of the SMP nodes: the developers assume that the vendor
MPI implementations are efficient enough that optimizing for SMP nodes would not yield large
performance improvements. Tuning for a specific architecture is considered a poor use of
resources: the investment required to gain expertise in a particular architecture is too great given
that new architectures appear every six months.

Two projects experimented in the past with improving performance on clusters of SMPs by
using OpenMP to leverage parallelism within nodes and MPI to leverage parallelism across
nodes. Results were mixed: one project found that a pure MPI implementation was competitive
with hybrid MPI-OpenMP approach, and the other did observe increased performance when
incorporating OpenMP but have not had a chance to follow up on this work due to other
priorities.

24

5.6 Project organization

Like all software projects that involve more than a single individual, the developers on these
projects must coordinate their efforts. We wanted to understand the organizational structure
(how the project was organized), the staff (who the developers were) and their configuration
management process (how the developers coordinated to make changes to the code). We were
looking for similarities and differences with software projects in other domains, and whether the
scientists encountered any domain-specific issues from a project management point of view.

Each project is divided up into groups that focus on different aspects of the problem. This
division is reflected in the code, where the software is partitioned into independent subsystems
and each subsystem is owned by one of the groups. Each subsystem has one or two chief
programmers who understand the subsystem in depth and are responsible for it. These chief
programmers make the majority of the changes to the code. Each project also has either a chief
software architect or a group who is responsible for the integration code.

Development is compartmentalized, and the groups are relatively independent. There are
integrated code development meetings once a week where the core developers from each of the
groups meet to discuss issues such as coordinating code changes that will affect more than one
module.

5.7 Staff

In total, there are about seventy-five people actively involved on a given project. Ten to
twenty-five of these people are core developers that routinely contribute code to the project. The
developers consist of professionals, professional staff members with M.S. and PhD degrees,
postdocs, and graduate students. Their backgrounds are in physics, chemistry, applied math,
engineering (mechanical, civil, aerospace, chemical), and computer science. The experience of
the programmers ranges from five to twenty-five years of sequential programming, and zero to
fifteen years of parallel programming. The projects also have graduate students who work on the
code as part of their research, though they are not core developers.

5.8 Configuration management

The projects use version control systems such as Concurrent Version System (CVS) [28] and
subversion to coordinate changes to the code, and all have integrated version control into their
development process. No projects have adopted a formal process for approving code before it is
checked into the repository. Instead, there is general agreement that test cases should pass before
commits are made to the repository. Developers are individually responsible for performing any
unit testing, standalone testing, and integration testing that may be necessary. On one project, all
developers are automatically notified by email whenever code is checked in to the repository so
that the developers are aware of recent modifications that might affect them.

Since all codes are in active use for scientific research and active development, the projects
must allow the developers to modify the code while ensuring that a stable version is always
available. Therefore, all projects maintain both stable and development versions of the code.

25

Only one project has a formal bug-tracking system that is in active use. On the other projects,
defect tracking is accomplished through informal communication among project members and
through the use of wikis. Some projects have attempted in the past to introduce defect tracking
systems, but these systems were not adopted by the developers.

5.9 Software usage

Our study focused mainly on issues related to the development of the software. However, we
also wanted to get a sense of how the software was used, and who was using it. Since problems
with requirements are a major issue in other domains of software engineering, and requirements
are often driven by user needs, we wanted to understand the role of the user in the software
development process in this domain. In addition, we wanted to understand what the execution
times were like. We did not know just how long these types of programs took to run, and we
believed going into the study that large execution times were a major obstacle to programmer
productivity. We wanted to understand the entire process of how the software was used, from
setting up the input to examining the output.

5.10 Users

The main users of the codes are research scientists who are the active developers. Some of
the users are students who are using the software for their own scientific research, and are not
active in the code development, but these efforts are not the primary concern of the Centers.
Some codes have found a user base outside of the project. These external users may even modify
the program to suit their own needs.

5.11 Execution times

Characterizing the execution times of the codes is difficult because execution times vary
enormously depending upon the size of the problem. Typical runs are on the order of ten to one
hundred hours of execution time.

5.12 Setting up the input

Most projects use configuration files for specifying program parameters, with two
exceptions: one project uses an interactive Python-based scripting interface, and another provides
a programmatic Fortran interface for specifying the initial conditions of the simulation. Some
projects have expressed interest in developing a graphical interface to simplify the task of setting
up the input for a run.

For some projects, generating the inputs is a very time-consuming task. Some of the codes
simulate systems with intricate geometries (e.g. the space shuttle), which are modeled as
unstructured meshes. Generating the mesh for an input can take an experienced user from half an
hour to weeks or months. In one case, a user spent a year generating a mesh for input.
Determining whether a given mesh is of sufficient quality is an active area of research.

26

It can also take hours to weeks to retrieve the physics data needed to run the software,
depending on what type of data is needed and how good the existing documentation is. In some
cases, determining the correct initial conditions for the simulation is also an active area of
research.

5.13 Examining the output

Users apply visualization tools for examining the output of the simulations. The projects use
a mix of visualization tools developed in-house and third-party tools.

5.14 Development activities

The developers engage in different activities during the course of development. We asked for
details about the following categories: adding new features to the code base, testing the code to
verify correctness, tuning the code to improve performance,